Integrated Marine Information System (IMIS)

Data Policy
Persons | Institutes | Publications | Projects | Datasets
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [280639]
Molecular evolution of candidate male reproductive genes in the brown algal model Ectocarpus
Lipinska, A.P.; Van Damme, E.J.M.; De Clerck, O. (2016). Molecular evolution of candidate male reproductive genes in the brown algal model Ectocarpus. BMC Evol. Biol. 16. dx.doi.org/10.1186/s12862-015-0577-9
In: BMC Evolutionary Biology. BioMed Central: London. ISSN 1471-2148; e-ISSN 1471-2148
Peer reviewed article  

Available in  Authors 

Keywords
    Ectocarpus Lyngbye, 1819 [WoRMS]
    Marine/Coastal
Author keywords
    Cell-cell recognition; Gamete receptor; Ectocarpus; Brown algae;Fertilization

Authors  Top 
  • Lipinska, A.P.
  • Van Damme, E.J.M.
  • De Clerck, O., more

Abstract
    BackgroundEvolutionary studies of genes that mediate recognition between sperm and egg contribute to our understanding of reproductive isolation and speciation. Surface receptors involved in fertilization are targets of sexual selection, reinforcement, and other evolutionary forces including positive selection. This observation was made across different lineages of the eukaryotic tree from land plants to mammals, and is particularly evident in free-spawning animals. Here we use the brown algal model species Ectocarpus (Phaeophyceae) to investigate the evolution of candidate gamete recognition proteins in a distant major phylogenetic group of eukaryotes.ResultsMale gamete specific genes were identified by comparing transcriptome data covering different stages of the Ectocarpus life cycle and screened for characteristics expected from gamete recognition receptors. Selected genes were sequenced in a representative number of strains from distant geographical locations and varying stages of reproductive isolation, to search for signatures of adaptive evolution. One of the genes (Esi0130_0068) showed evidence of selective pressure. Interestingly, that gene displayed domain similarities to the receptor for egg jelly (REJ) protein involved in sperm-egg recognition in sea urchins.ConclusionsWe have identified a male gamete specific gene with similarity to known gamete recognition receptors and signatures of adaptation. Altogether, this gene could contribute to gamete interaction during reproduction as well as reproductive isolation in Ectocarpus and is therefore a good candidate for further functional evaluation.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 
[Back]