Integrated Marine Information System (IMIS)

Data Policy
Persons | Institutes | Publications | Projects | Datasets
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [292628]
Independent estimates of marine population connectivity are more concordant when accounting for uncertainties in larval origins
Nolasco, R.; Gomes, I.; Peteiro, L.; Albuquerque, R.; Luna, T.; Dubert, J.; Swearer, S.E.; Queiroga, H. (2018). Independent estimates of marine population connectivity are more concordant when accounting for uncertainties in larval origins. NPG Scientific Reports 8(1): 16 pp. https://dx.doi.org/10.1038/s41598-018-19833-w
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Nolasco, R.
  • Gomes, I.
  • Peteiro, L.
  • Albuquerque, R.
  • Luna, T.
  • Dubert, J.
  • Swearer, S.E.
  • Queiroga, H.

Abstract
    Marine larval dispersal is a complex biophysical process that depends on the effects of species biology and oceanography, leading to logistical difficulties in estimating connectivity among populations of marine animals with biphasic life cycles. To address this challenge, the application of multiple methodological approaches has been advocated, in order to increase confidence in estimates of population connectivity. However, studies seldom account for sources of uncertainty associated with each method, which undermines a direct comparative approach. In the present study we explicitly account for the statistical uncertainty in observed connectivity matrices derived from elemental chemistry of larval mussel shells, and compare these to predictions from a biophysical model of dispersal. To do this we manipulate the observed connectivity matrix by applying different confidence levels to the assignment of recruits to source populations, while concurrently modelling the intrinsic misclassification rate of larvae to known sources. We demonstrate that the correlation between the observed and modelled matrices increases as the number of observed recruits classified as unknowns approximates the observed larval misclassification rate. Using this approach, we show that unprecedented levels of concordance in connectivity estimates (r = 0.96) can be achieved, and at spatial scales (20–40 km) that are ecologically relevant

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 
[Back]