The validity of the muricid subfamily Ergalataxinae has recently been confirmed with molecular data, but its composition and the relationships among its constituent genera remain unclear. In order to investigate this, we use four genes (28S rRNA, 12S rRNA, 16S rRNA and cytochrome c oxidase subunit I) to construct a Bayesian phylogeny of 52 ergalataxine species in 18 genera, representing c. 40% of the currently accepted species and 86% of the genera. This is the most complete phylogeny of this taxonomically confusing subfamily yet produced. Our results indicate the polyphyly of many traditional genera, including Morula, Pascula and Orania. In order to improve the correspondence between classification and phylogeny, we restrict the definition of Morula, resurrect Tenguella and elevate Oppomorus to full genus, but describe no new genera. Several species in this analysis could not be identified and may be new, but we do not describe them. Further molecular and morphological analyses, in the context of this framework, should help to resolve the remaining ambiguities in the classification of this subfamily. The oldest fossil member of the Ergalataxinae known to us is of Early Oligocene age. |