Biodiversity patterns of marine crustaceans are still unknown in many locations or might have been overlooked due to our knowledge gaps, despite increasing sampling and data sharing efforts during the last decades. By analysing big data extracted from open portals such as Ocean Biodiversity Information System (OBIS) and Global Biodiversity Information System (GBIF), we aim to revisit the distribution and biodiversity patterns of the highly speciose and abundant Crustacea in the Northwest Pacific (NWP) from shallowest depths to the deep sea. This study focussed on selected benthic and pelagic crustacean (sub) classes and their species richness, sampling effort, and expected species richness (ES50) using equal/sized hexagonal cells, 5° latitudinal bands, 500 m depth intervals were analyzed. Crustacean species richness was highest in the tropical Philippines as well as around the Japanese islands. Pelagic crustacean species richness peaked at 30° latitude and declined beyond that. Benthic taxa; however, depicted high levels of species richness across most of the latitudinal gradient, reaching its highest point at 45° latitude. Due to the prevalence of certain crustacean orders in the deep sea, benthic species richness showed a distribution pattern with two distinct peaks across bathymetric gradients; with highest species richness recorded at shallow-water depths and also at abyssal depths. The most important environmental drivers of benthic and pelagic crustacean species richness were primary productivity (positive correlation) and salinity (negative correlation). Our study provides first insights into biodiversity patterns of the highly diverse Crustacea in the NWP and highlights strong differences between benthic and pelagic taxa. The results presented here could help us to better understand whether benthic or pelagic taxa might respond differently to climate changes in the NWP based on their distinct physiological and biological characteristics. This information is crucial in establishing species management strategies and ecosystem restorations in both shallow water and deep-sea environments. |