Matang Mangrove Forest Reserve (MMFR) in peninsular Malaysia has been managed for pole and charcoal production from Rhizophora stands with a 30-year rotation cycle since 1902. The aim of this study is to estimate the carbon budget of the MMFR by considering the carbon stock of the forest, evaluated from remote sensing data (Landsat TM and ETM+, JERS-1 SAR, ALOS PALSAR, ALOS-2 PALSAR-2, SRTM, TANDEM-X, and WorldView-2) for aboveground carbon and field data for belowground carbon. This was investigated in combination with the emissions from the silvicultural activities in the production chain, plus the distribution and consumer-related activities covering the supply chain, estimated with appropriate emission factors. The aboveground biomass carbon stock of the productive forest was of 1.4 TgC, while for the protective forest (not used for silviculture) it was at least equal to 1.2 TgC. The total soil carbon of ca. 32 TgC shows the potential of the MMFR as a carbon sink. However, the commercial exploitation of mangroves also generates greenhouse gasses with an estimate of nearly 152.80 Mg C ha−1 during charcoal production and up to 0.53 Mg C ha−1 during pole production, for a total emission of 1.8 TgC. Consequently, if the productive forest alone is considered, then the carbon budget is negative, and the ongoing silvicultural management seems to be an unsustainable practice that needs a reduction in the exploited area of at least 20% to achieve carbon neutrality. However, even with the current management, and considering the protective forest together with the productive zones, the MMFR carbon budget is slightly positive, thus showing the importance of mangrove conservation as part of the management for the preservation of the carbon stock. |